Du är offline. Det här är en skrivskyddad version av sidan.
Hoppa till huvudinnehåll
KTH Exjobbportal
Växla navigering
Uppdrag
Prenumerera
Om KTH Exjobbportal
Om KTH Exjobbportal
För uppdragsgivare
För studenter
FAQ
Svenska
English
Svenska
Logga in
Ansök med e-post
Ansök med URL
Uppdrag
Rubrik
*
*
Organisation/Företag
*
Plats
*
Uppdrag
*
Beskrivning
*
*
Metal Recovery from Battery-Recycling Leachates Using Metal-Organic Frameworks - Background - Metal-Organic Frameworks (MOFs) are porous materials composed of metal nodes (or clusters) connected by organic linkers. With their high surface area and tunable pore architectures, MOFs can be systematically tailored by choosing various metals and linkers to fulfill specific applications such as ion separation, gas storage, and drug delivery. This combination of modular design and performance makes MOFs strong candidates for addressing environmental and industrial challenges. Notably, the impact of MOF research was recognized with the 2025 Nobel Prize in Chemistry! In battery recycling, recovering high-purity metals cuts mining’s environmental footprint by reducing emissions and strengthening the domestic supply of valuable metals. Beyond nickel, cobalt, and lithium, batteries also contain valuable metals such as copper, aluminum, and manganese (Mn2+). Here, we propose SU-102 for capturing and recovering metals such as Mn2+. SU-102 is a zirconium-based MOF built with an organic linker extracted from pomegranate. It is an anionic framework that can strongly interact with cations such as Mn2+, and it is environmentally friendly and water-stable, offering a high surface area (≈472 m2 g−1) and large ≈12 Å pore channels and features an anionic framework that strongly interacts with cations such as Mn2+, thereby enabling selective capture and efficient recovery of lead from an aqueous environment. - Objectives - This project aims to 1. Synthesize and activate SU-102 with high phase purity and accessible porosity verification using PXRD, SEM, TGA, and N2 sorption. 2. Quantify Mn2+ capture capacity and selectivity against competing cations such as Al3+ and Zn2+ across a range of pH values and concentrations using ICP, PXRD, and N2 sorption. 3. Evaluate regeneration and durability under harsh conditions (e.g., various pH range, multi-cycle regeneration (≥5–10 cycles)), stability of spent SU-102 will be characterized using PXRD, SEM, TGA, and N2 sorption. - What you will gain - You will gain hands-on experience in MOF synthesis and characterization; build practical skills in porous materials science, solution chemistry, and data analysis/visualization; and develop your ability to communicate results through a thesis and, potentially, a manuscript draft. Supervisor: Ribooga Chang, Postdoc, ribooga@kth.se Examiner: Kerstin Forsberg, Professor, kerstino@kth.se If you have any questions, feel free to contact Ribooga! - Reference- [1] Svensson Grape, E., et al. Removal of pharmaceutical pollutants from effluent by a plant-based metal–organic framework. Nat Water 1, 433–442 (2023). https://doi.org/10.1038/s44221-023-00070-z [2] Svensson Grape, E., et al. A Robust and Biocompatible Bismuth Ellagate MOF Synthesized Under Green Ambient Conditions. J. Am. Chem. Soc. 39, 16795–16804 (2020). https://doi.org/10.1021/jacs.0c07525
Det finns inga poster att visa.
Du har inte behörighet att visa de här posterna.
Fel när begäran slutfördes.
Läser in ...
Skapa
×
Stäng
Redigera
×
Stäng
Visa information
×
Stäng
Ta bort
×
Stäng
Vill du radera den här posten?
Fel
×
Stäng
Ett fel har uppstått.
Sista ansökningsdatum
*
*
Publiceringsdatum
*
*
Omfattning
30 hp
15 hp
15-30 hp
Applikationskanal
*
e-post
URL
Båda
E-post för ansökan
*
*
Appens URL
*
Ansökningshandlingar
*
CV and cover letter