Du är offline. Det här är en skrivskyddad version av sidan.
Hoppa till huvudinnehåll
KTH Exjobbportal
Växla navigering
Uppdrag
Prenumerera
Om KTH Exjobbportal
Om KTH Exjobbportal
För uppdragsgivare
För studenter
FAQ
Svenska
English
Svenska
Logga in
Ansök med e-post
Ansök med URL
Uppdrag
Rubrik
*
*
Organisation/Företag
*
Plats
*
Uppdrag
*
Beskrivning
*
*
Background: The technological advancement of the past decade have led to a widespread deployment of mobile robots in several application scenarios, including search and rescue, agriculture, delivery. These robots are equipped with sensing and computational resources, and linked by a wireless network, enabling them to cooperatively execute different tasks. One of these tasks is to map and navigate an unknown environment, for example when the robots are deployed for search and rescue in disaster areas. This can be accomplished in a cooperative fashion, with the different robots collecting sensor measurements and then fusing them in a single map, represented by a neural network. Objective: The project focuses on the development of efficient cooperative learning techniques to construct the map of an unknown environment. The roadmap of the project is as follows: 1) guided literature review, 2) application and comparison of different cooperative learning algorithms, 3) numerical evaluations in realistic robot exploration scenarios. The project has the potential to lead to conference and journal publications in top venues. We are looking for 1 student to join this project. Requirements are: some background on machine learning, good programming skills (Python), and optionally background on optimization. The start date is flexible, and the project will take around 20 weeks. The project will be conducted in the Division of Decision and Control Systems, with flexible remote work, under the supervision of Dr. Nicola Bastianello (nicolba@kth.se).
Det finns inga poster att visa.
Du har inte behörighet att visa de här posterna.
Fel när begäran slutfördes.
Läser in ...
Skapa
×
Stäng
Redigera
×
Stäng
Visa information
×
Stäng
Ta bort
×
Stäng
Vill du radera den här posten?
Fel
×
Stäng
Ett fel har uppstått.
Sista ansökningsdatum
*
*
Publiceringsdatum
*
*
Omfattning
30 hp
15 hp
15-30 hp
Applikationskanal
*
e-post
URL
Båda
E-post för ansökan
*
*
Appens URL
*
Ansökningshandlingar
*
CV, academic transcripts, motivation letter (optional)